La Stimolazione Elettrica Transcranica

tdcs neuroni lrdefinita con l'acronimo tCS (transcranial Current Stimulation) è una metodica di neurostimolazione che utilizza correnti a bassa intensità di tipo diretta (tDCS) o alternata (tACS), erogate direttamente nella zona del cervello di interesse attraverso piccoli elettrodi.

La corrente che fluisce dagli elettrodi induce una neurostimolazione che può aumentare o diminuire l'eccitabilità neuronale nella specifica area del cervello, permettendo così l'effetto terapeutico per il trattamento di alcune patologie come la depressione, il trattamento del dolore, la riabilitazione post-stroke ed altre forme diisturbi neurologici o psichiatrici.

starstim dietro


Stimolazione Elettrica 
Transcranica (tDCS, tACS, tRNS, Sham) e monitoraggio EEG



Pubblicazioni scientifiche

(link per argomento)


Foto documentario BBC durante l'esperimento sul Monte Bianco



GEA soluzioni è distributore esclusivo per l'Italia di:


logo magventure nuovo lr trasp

  stimolatori magnetici

trattamento della depressione

riabilitazione cognitiva e muscolare



logo localite s

navigatore TMS

Posizionamento elettrodi EEG PinPoint



Logo medicom web

polisonnigrafi wireless

elettroencefalografi, video EEG, holter, CFM


biofeedback, neurofeedback



logo sigma

elettromiografi portatili

elettromiografi carrellati



logo ne

neurostimolatori tCS

elettroencefalografi wireless



logo artinis png

sistemi NIRS wireless cerebrali e muscolari

Near Infrared Spectroscopy fino a 128 canali



GEA software

applicativi gestionali per studi medici

analisi e statistiche dati clinici 


 logo hidalgo

monitoraggio indossabile wireless




processi cerebrali 


Pubblicazioni su tDCS, tACS, tRNS


Di seguito pubblichiamo una raccolta di articoli, white paper e lavori scientifici a livello internazionale suddivisi per le seguenti applicazioni:

  • depressione
  • dolore
  • riabilitazione cognitiva
  • stroke

Simultaneous EEG Monitoring During Transcranial Direct Current Stimulation


Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial.

To further investigate the efficacy of tDCS in a double-blind, sham-controlled trial (registered at NCT00763230). 64 participants with current depression received active or sham anodal tDCS to the left prefrontal cortex (2 mA, 15 sessions over 3 weeks), followed by a 3-week open-label active treatment phase. Mood and neuropsychological effects were assessed. There was significantly greater improvement in mood after active than after sham treatment (P<0.05), although no difference in responder rates (13% in both groups). Attention and working memory improved after a single session of active but not sham tDCS (P<0.05). There was no decline in neuropsychological functioning after 3-6 weeks of active stimulation. One participant with bipolar disorder became hypomanic after active tDCS. Findings confirm earlier reports of the antidepressant efficacy and safety of tDCS. Vigilance for mood switching is advised when administering tDCS to individuals with bipolar disorder.


Enhancement of Affective Processing Induced by Bifrontal Transcranial Direct Current Stimulation in Patients With Major Depression

Randomized, double-blind, sham-controlled, parallel design enrolling 24 age-, gender-matched, drug-free, depressed subjects. Anode and cathode were placed over the left and right dorsolateral prefrontal cortex. Active but not sham tDCS significantly modified the negative attentional bias. These findings add evidence that a single tDCS session transiently induces potent changes in affective processing, which might be one of the mechanisms of tDCS underlying mood changes.


The Sertraline vs Electrical Current Therapy for Treating Depression Clinical Study Results From a Factorial, Randomized, Controlled Trial

The goal was to assess the combined safety and efficacy of tDCS vs a common pharmacological treatment (sertraline hydrochloride, 50 mg/d). 120 antidepressant-free patients with moderate to severe, nonpsychotic, unipolar major depressive disorder (MDD). Six-week treatment of 2-mA anodal left/cathodal right prefrontal tDCS (12 30-minute sessions: 10 consecutive sessions once daily from Monday to Friday plus 2 extra sessions every other week) and sertraline hydrochloride (50 mg/d). Use of tDCS only (but not sertraline only) was superior to placebo/sham tDCS. Common adverse effects did not differ between interventions, except for skin redness on the scalp in active tDCS (P = .03). There were 7 episodes of treatment-emergent mania or hypomania, 5 occurring in the combined treatment group. Conclusions and Relevance: In MDD, the combination of tDCS and sertraline increases the efficacy of each treatment. The efficacy and safety of tDCS and sertraline did not differ.


Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder.

28 age- and gender-matched, antidepressant-free depressed subjects received a single-session of active/sham tDCS in a randomized, double-blind, parallel design. The anode was positioned over the left and the cathode over the right dorsolateral prefrontal cortex. The n-back task was used for assessing working memory and it was performed immediately before and 15min after tDCS onset. All effect sizes were large.In other words, one session of tDCS acutely enhanced WM in depressed subjects, suggesting that tDCS can improve "cold" (non affective-loaded) working memory processes in MDD.


Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind,placebo-controlled study.

22 patients with a major depressive episode were randomly assigned to a cross-over protocol comparing tDCS and placebo stimulation add-on to a stable antidepressant medication. Anodal tDCS, applied for 2 weeks, was not superior to placebo treatment in patients with treatment resistant depression. However, secondary outcome measures are pointing to a positive effect of tDCS on emotions. Therefore, modified and improved tDCS protocols should be carried out in controlled pilot trials to develop tDCS towards an efficacious antidepressant intervention in therapy-resistant depression.


Amelioration of cognitive control in depression by transcranial direct current stimulation.

Deficient cognitive control over emotional distraction is a central characteristic of major depressive disorder (MDD). Hypoactivation of the dorsolateral prefrontal cortex (dlPFC) has been linked with this deficit. In this study, we aimed to enhance the activity of the dlPFC in MDD patients tDCS and thus ameliorate cognitive control. In a double-blinded, balanced, randomized, sham-controlled crossover trial, we determined the effect of a single-session tDCS to the left dlPFC on the cognitive control in 22 MDD patients and 22 healthy control subjects. To assess the cognitive control, we used a delayed response working memory task with pictures of varying content (emotional vs. neutral) presented during the delay period. Emotional pictures presented during the delay period impaired accuracy and response time of patients with MDD, indicating an attentional bias for emotional stimuli. Anodal tDCS to the dlPFC was associated with an enhanced working memory performance both in patients and control subjects. Specifically in subjects with MDD, the attentional bias was completely abolished by anodal tDCS. The present study demonstrates that anodal tDCS applied to the left dlPFC improves deficient cognitive control in MDD. Based on these data, tDCS might be suitable to support the effects of behavioral training to enhance cognitive control in MDD.


Transcranial direct current stimulation (tDCS) for depression: Analysis of response using a threefactor structure of the Montgomery–Åsberg depression rating scale

There is growing evidence that tDCS may be an effective treatment for depression. However, no study to date has profiled the antidepressant effects of tDCS using items or factors on depression symptom severity rating scales. Participants in the active tDCS treatment group showed significant improvement in dysphoria while participants in the sham treatment group did not. While both groups showed improvement in retardation symptoms, improvement was significantly greater in the active tDCS group.


Could Transcranial Direct Current Stimulation Have Unexpected Additional Benefits in the Treatment of Depressed Patients?

The application of novel brain stimulation techniques to treat depression, and possibly other neuropsychiatric disorders, is a new and rapidly growing field. Among these techniques, transcranial direct current stimulation (tDCS) is emerging as one of the most promising approaches because of its relative ease of use, safety and neurobiological effects. One of the most promising therapeutic applications of tDCS has been in the treatment of depression. A recent meta-analysis suggested that tDCS may have robust and clinically meaningful effects in treating depression (see below). This group recently published the largest and most definitive sham-controlled trial of tDCS in depression (see above). Active stimulation was more effective than sham stimulation, and 48% of subjects who received 30 treatments of tDCS (given every weekday over a period of 6 weeks) responded to treatment. In the course of conducting this trial, it has been observed that tDCS may induce additional benefits that appeared to be independent of mood improvement. These observations are consistent with reports in the literature of cognitive enhancement and pain relief with tDCS.

Anodal stimulation of the left dorsolateral prefrontal cortex (the same region stimulated for the treatment of depression) has been shown to enhance task performance across a number of 'executive' cognitive tasks, tapping higher-level cognitive functions, such as working memory, verbal fluency and planning.




Migraine prophylaxis by anodal transcranial direct current stimulation, a randomized, placebo-controlled trial.

Past evidence had shown that consecutive motor cortex (M1) stimulation with anodal tDCS was effective to relieve central pain. 37 migraine patients participated in the final analyses (active: n = 20, sham: n = 17). The results showed statistically significant reduction in attack frequency and abortive medications at week 4 and 8 after treatment. The pain intensity was statistically significant reduced at week 4, 8, and 12. All patients tolerated the tDCS well without any serious adverse events. The present study suggests that anodal M1 tDCS may be a safe and useful clinical tool in migraine prophylaxis.


tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine.  

We investigated in a sham-controlled trial the analgesic effects of a 4-week treatment of transcranial direct current stimulation (tDCS) over the primary motor cortex in chronic migraine. In addition, using a high-resolution tDCS computational model, we analyzed the current flow (electric field) through brain regions associated with pain perception and modulation. 13 patients with chronic migraine were randomized to receive 10 sessions of active or sham tDCS for 20 minutes with 2 mA over 4 weeks.  There was a significant interaction term (time vs group) for the main outcome (pain intensity) and for the length of migraine episodes (ANOVA, P < .05 for both analyses). Post-hoc analysis showed a significant improvement in the follow-up period for the active tDCS group only.  Our findings give preliminary evidence that patients with chronic migraine have a positive, but delayed, response to anodal tDCS of the primary motor cortex. These effects may be related to electrical currents induced in pain-related cortical and subcortical regions.


 The effects of transcranial direct current stimulation with visual illusion in neuropathic pain due to spinal cord injury: an evoked potentials and quantitative thermal testing study. 

Neuropathic pain (NP) is common in spinal cord injury (SCI) patients. We studied whether pain relief with tDCS + VI intervention is accompanied by a change in contact heat- evoked potentials (CHEPs) or in QTT. We examined 18 patients with SCI and NP before and after 2 weeks of daily tDCS + VI intervention. 20 SCI patients without NP and 14 healthy subjects served as controls. We assessed NP intensity using a numerical rating scale (NRS) and determined heat and pain thresholds with thermal probes. CHEPs were recorded to stimuli applied at C4 level, and subjects rated their perception of evoked pain using NRS during CHEPs. Two weeks of tDCS + VI induced significant changes in CHEPs, evoked pain and heat pain threshold in SCI patients with NP. These neurophysiological tests might be objective biomarkers of treatment effects for NP in patients with SCI.


Focal modulation of the primary motor cortex in fibromyalgia using 4×1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation.

Fibromyalgia is a prevalent chronic pain syndrome characterized by altered pain and sensory processing in the central nervous system, which is often refractory to multiple therapeutic approaches. Given previous evidence supporting analgesic properties of noninvasive brain stimulation techniques in this condition, this study examined the effects of a novel, more focal method of transcranial direct current stimulation (tDCS), using the 4×1-ring configuration of high-definition (HD)-tDCS, on overall perceived pain in fibromyalgia patients. 

In this patient- and assessor-blind, sham-controlled, crossover trial, 18 patientswere randomized to undergo single 20-minute sessions of anodal, cathodal, and sham HD-tDCS at 2.0 mA in a counterbalanced fashion. The center electrode was positioned over the left primary motor cortex. We found that both active stimulation conditions led to significant reduction in overall perceived pain as compared to sham. This effect occurred immediately after cathodal HD-tDCS and was evident for both anodal and cathodal HD-tDCS 30 minutes after stimulation.


Transcranial Direct Current Stimulation (tDCS) Relieved Itching in a Patient With Chronic Neuropathic Pain.

This case report presents a first note on beneficial effects of tDCS on itching associated with chronic neuropathic pain in a patient diagnosed with syringomyelia. Although there was no change in pain intensity or quality during or after tDCS, the treatment resulted in a reduction in itch to a mild, tolerable intensity that persisted for 3 to 4 months after each course, before returning to the pretreatment level. The patient has agreed to a plan of care that will incorporate neurostimulation every 4 to 6 months, as long as its effectiveness continues. This case provides a rationale for future studies of neuromodulatory treatments for itch, and indicates a potential clinical use of neuromodulation in patients with unrelieved itching.


Motor and parietal cortex stimulation for phantom limb pain and sensations.

Limb amputation may lead to chronic painful sensations referred to the absent limb, ie phantom limb pain (PLP), which is likely subtended by maladaptive plasticity. The present study investigated whether tDCS, a noninvasive technique of brain stimulation that can modulate neuroplasticity, can reduce PLP. In 2 double-blind, sham-controlled experiments in subjects with unilateral lower or upper limb amputation, we measured the effects of a single session of tDCS (2 mA, 15 min) of the primary motor cortex (M1) and of the posterior parietal cortex (PPC) on PLP, stump pain, nonpainful phantom limb sensations and telescoping. Anodal tDCS of M1 induced a selective short-lasting decrease of PLP, whereas cathodal tDCS of PPC induced a selective short-lasting decrease of nonpainful phantom sensations; stump pain and telescoping were not affected by parietal or by motor tDCS. These findings demonstrate that painful and nonpainful phantom limb sensations are dissociable phenomena. PLP is associated primarily with cortical excitability shifts in the sensorimotor network; increasing excitability in this system by anodal tDCS has an antalgic effect on PLP. Conversely, nonpainful phantom sensations are associated to a hyperexcitation of PPC that can be normalized by cathodal tDCS. This evidence highlights the relationship between the level of excitability of different cortical areas, which underpins maladaptive plasticity following limb amputation and the phenomenology of phantom limb, and it opens up new opportunities for the use of tDCS in the treatment of PLP.



Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect 

This was a double blind experiment with 10 chronic right hemispheric stroke patients with neglect were treated with tDCS over the post parietal cortex (PPC). In the line bisection test, significant improvements were observed after both the dual- and the single-mode tDCS (p < 0.05), but not after sham stimulation. Statistical analysis showed a significant interaction between time and tDCS mode, where the dual tDCS had a stronger effect than the single or sham stimulation modes (p < 0.05).   Results suggest that dual tDCS over the bilateral PPC is an effective method for the treatment of USN in stroke patients.


Long-term effects of serial anodal tDCS on motion perception in subjects with occipital stroke measured in the unaffected visual hemifield

12 subjects with occipital ischemic lesions participated in a within-subject, sham-controlled, double-blind study.  Serial anodal tDCS over the visual cortex resulted in an improvement in motion perception, a function attributed to MT/V5. This effect was still measurable at 14- and 28-day follow-up measurements. Thus, this may represent evidence for long-term tDCS-induced plasticity and has implications for the design of studies examining the time course of tDCS effects in both the visual and motor systems.


tDCS stimulation segregates words in the brain: evidence from aphasia

A number of studies have already shown that modulating cortical activity by means of tDCS improves noun or verb naming in aphasic patients. However, it is not yet clear whether these effects are equally obtained through stimulation over the frontal or the temporal regions. In the present study, the same group of aphasic subjects participated in two randomized double-blind experiments involving two intensive language treatments for their noun and verb retrieval difficulties. 7 aphasic subjects (5 men and 2 female) who had suffered a single left hemisphere stroke were included in the study. During each training, each subject was treated with tDCS (20 min, 1 mA) over the left hemisphere in three different conditions: anodic tDCS over the temporal areas, anodic tDCS over the frontal areas, and sham stimulation, while they performed a noun and an action naming tasks. Results showed a significant greater improvement in noun naming after stimulation over the temporal region, while verb naming recovered significantly better after stimulation of the frontal region. 


Transcranial Direct Current Stimulation Improves Swallowing Function in Stroke Patients

We investigated whether noninvasive brain stimulation to the pharyngeal motor cortex combined with intensive swallowing therapy can improve dysphagia. A total of 20 patients who had dysphagia for at least 1 month after stroke were randomly assigned to receive10 sessions lasting 20 minutes each of either 1-mA anodal tDCS or a sham procedure to the ipsilesional pharyngeal motor cortex, along with simultaneous conventional swallowing therapies. We evaluated swallowing function with the Dysphagia Outcome and Severity Scale (DOSS) before, immediately after, and 1 month after the last session. The improvements in the anodal tDCS group were significantly greater than those in the sham tDCS group (P = .029 after the last session, and P = .007 1 month after the last session). Anodal tDCS to the ipsilesional hemisphere and simultaneous peripheral sensorimotor activities significantly improved swallowing function as assessed by the DOSS.


Effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia.

We investigate the effects of tDCS combined with swallowing training on post-stroke dysphagia. 16 patients with post-stroke dysphagia, diagnosed using video fluoroscopic swallowing (VFSS), were randomly assigned into two groups: (1) anodal tDCS group (1 mA for 20 min), or (2) sham group (1 mA for 30 s). Patients received anodal tDCS or sham over the pharyngeal motor cortex of the affected hemisphere during 30 min of conventional swallowing training for 10 days. Functional dysphagia scale (FDS) scores based on VFSS were measured at baseline and immediately and 3 months after the intervention. After the intervention, FDS scores improved in both groups without significant differences. However, 3 months after the intervention, anodal tDCS elicited greater improvement in terms of FDS compared to the sham group (β = -7.79, p = 0.041).  Thus, Anodal tDCS applied over the affected pharyngeal motor cortex can enhance the outcome of swallowing training in post-stroke dysphagia. Our results suggest that non-invasive cortical stimulation has a potential role as an adjuvant strategy during swallowing training in patients with post-stroke dysphagia.


Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand.

In the present study, we tested the capacity of cathodal tDCS applied over the contralesional motor cortex during training to enhance the acquisition and retention of complex sequential finger movements of the paretic hand. 12 well-recovered chronic patients with subcortical stroke attended 2 training sessions during which either cathodal tDCS or a sham intervention were applied to the contralesional motor cortex in a double-blind, crossover design. tDCS facilitated the acquisition of a new motor skill compared with sham stimulation (P=0.04) yielding better task retention results. A significant correlation was observed between the tDCS-induced improvement during training and the tDCS-induced changes of intracortical inhibition (R(2)=0.63). These results indicate that tDCS is a promising tool to improve not only motor behavior, but also procedural learning. They further underline the potential of noninvasive brain stimulation as an adjuvant treatment for long-term recovery, at least in patients with mild functional impairment after stroke.


Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients.

The aim of this trial was to test the hypothesis that dual-tDCS applied bilaterally over the primary motor cortices (M1) improves online motor skill learning with the paretic hand and its long-term retention. 18 chronic stroke patients participated in a randomized, cross-over, placebo-controlled, double bind trial. During separate sessions, dual-tDCS or sham dual-tDCS was applied over 30 min while stroke patients learned a complex visuomotor skill with the paretic hand: using a computer mouse to move a pointer along a complex circuit as quickly and accurately as possible. A learning index involving the evolution of the speed/accuracy trade-off was calculated. Performance of the motor skill was measured at baseline, after intervention and 1 week later. After sham dual-tDCS, eight patients showed performance worsening. In contrast, dual-tDCS enhanced the amount and speed of online motor skill learning compared to sham (p < 0.001) in all patients; this superiority was maintained throughout the hour following. The speed/accuracy trade-off was shifted more consistently after dual-tDCS (n = 10) than after sham (n = 3). More importantly, 1 week later, online enhancement under dual-tDCS had translated into superior long-term retention (+44%) compared to sham (+4%). The improvement generalized to a new untrained circuit and to digital dexterity. Conclusion: A single-session of dual-tDCS, applied while stroke patients trained with the paretic hand significantly enhanced online motor skill learning both quantitatively and qualitatively, leading to successful long-term retention and generalization. The combination of motor skill learning and dual-tDCS is promising for improving post-stroke neurorehabilitation.


Predicting behavioural response to TDCS in chronic motor stroke

tDCS of primary motor cortex (M1) can transiently improve paretic hand function in chronic stroke. However, responses are variable so there is incentive to try to improve efficacy and or to predict response in individual patients. Both excitatory (Anodal) stimulation of ipsilesional M1 and inhibitory (Cathodal) stimulation of contralesional M1 can speed simple reaction time. Here we tested whether combining these two effects simultaneously, by using a bilateral M1–M1 electrode montage, would improve efficacy. We tested the physiological efficacy of Bilateral, Anodal or Cathodal tDCS in changing motor evoked potentials (MEPs) in the healthy brain and their behavioural efficacy in changing reaction times with the paretic hand in chronic stroke. 13 chronic stroke patients (3 females, mean: 66 years, range 30–80 years) with hemiparesis subsequent to first-ever unilateral stroke were recruited  Findings indicate the superiority of Anodal or Cathodal over Bilateral TDCS in changing motor cortico-spinal excitability in the healthy brain and in speeding reaction time in chronic stroke. Although patients were in the chronic phase, time since stroke was a positive predictor of behavioral gain from Cathodal TDCS.


Single session of dual-tDCS transiently improves precision grip and dexterity of the paretic hand after stroke

We explored whether dual-hemisphere tDCS (dual-tDCS) in participants with chronic stroke can improve fine hand motor function in 2 important aspects: precision grip and dexterity. 19 chronic hemiparetic individuals with mild to moderate impairment participated in adouble-blind, randomized trial. During 2 separate cross-over sessions (real/sham), they performed 10 precision grip movements with a manipulandum and the Purdue Pegboard Test (PPT) before, during, immediately after, and 20 minutes after dual-tDCS applied simultaneously over the ipsilesional (anodal) and contralateral (cathodal) primary motor cortices. Conclusions: One bout of dual-tDCS improved the motor control of precision grip and digital dexterity beyond the time of stimulation. These results suggest that dual-tDCS should be tested in longer protocols for neurorehabilitation and with moderate to severely impaired patients. The precise timing of stimulation after stroke onset and associated training should be defined.


The ABC of tDCS: Effects of Anodal, Bilateral and Cathodal Montages of Transcranial Direct Current Stimulation in Patients with Stroke—A Pilot Study

Previous studies have demonstrated that anodal and cathodal stimulation can improve motor performance in terms of dexterity and manual force. The objective of this study was to determine whether different electrodes’ setups (anodal, cathodal, and simultaneous bilateral tDCS) provide different motor performance and which montage was more effective. As secondary outcome, we have asked to the patients about their satisfaction, and to determine if the bilateral tDCS was more uncomfortable than unilateral tDCS. 9 patients with stroke in subacute phase were enrolled in this study and randomly divided in three groups. tDCS was an effective treatment if compared to Sham stimulation. In particular, anodal stimulation provided the higher improvement in terms of manual dexterity. Cathodal stimulation seemed to have a little effect in terms of force improvement, not observed with other setups. Bipolar stimulation seemed to be the less effective. No significant differences have been noted for the different set-ups for patients’ judgment. These results highlight the potential efficacy of tDCS for patients with stroke in subacute phase.


Improvement of the working memory and naming by transcranial direct current stimulation.

32 healthy adults (15 males and 17 females, mean age 37.3±13.0 years) were enrolled in this study. The subjects were divided into four groups randomly. They underwent sham or anodal tDCS over the left or right prefrontal cortex, for 20 minutes at a direct current of 1 mA. Before and immediately after tDCS, the subjects performed the Korean version of the mini-mental state exam (K-MMSE) and stroop test (color/word/interference) for the screening of cognitive function. For working memory and language evaluation, the digit span test (forward/backward), the visuospatial attention test in computer assisted cognitive program (CogPack®) and the Korean-Boston Naming Test (K-BNT) were assessed before tDCS, immediately after tDCS, and 2 weeks after tDCS. RESULTS: The stroop test (word/interference), backward digit span test and K-BNT were improved in the left prefrontal tDCS group compared with that of the sham group (p<0.05). Their improvement lasted for 2 weeks after stimulation. Conclusion: tDCS can induce verbal working memory improvement and naming facilitation by stimulating the left prefrontal cortex. It can also improve the visuospatial working memory by stimulating the right prefrontal cortex. Further studies which are lesion and symptom specific tDCS treatment for rehabilitation of stroke can be carried out.


Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke.

This article presents an up-to-date systematic review of the treatment effects of rTMS and tDCS on motor function. A literary search was conducted, utilizing search terms "stroke" and "transcranial stimulation." Investigation of PubMed English Database prior to 01/01/2012 produced 695 applicable results. Studies were excluded based on the aforementioned criteria, resulting in 50 remaining studies. They included 1314 participants (1282 stroke patients and 32 healthy subjects) evaluated by motor function pre- and post-tDCS or rTMS. Heterogeneity among studies' motor assessments was high and could not be accounted for by individual comparison. Pooled effect sizes for the impact of post-treatment improvement revealed consistently demonstrable improvements after tDCS and rTMS therapeutic stimulation. Most studies provided limited follow-up for long-term effects. Conclusion: It is apparent from the available studies that non-invasive stimulation may enhance motor recovery and may lead to clinically meaningful functional improvements in the stroke population. Only mild to no adverse events have been reported. Though results have been positive results, the large heterogeneity across articles precludes firm conclusions.


Disruption of motor network connectivity post-stroke and its noninvasive neuromodulation.

New data from longitudinal studies in which rTMS of the lesioned or contralesional motor cortex was combined with motor training showed ambiguous effects: some patients improved whereas others did not show any rTMS effect (compared with control stimulation). In contrast, novel studies using tDCS point to a more consistent effect on distal upper limb function, especially for inhibitory (cathodal) tDCS applied over contralesional M1.Neuroimaging data reveal that the effects of rTMS/tDCS on the functional architecture of the motor system depend upon lesion location, degree of impairment and number of treatment sessions. Furthermore, analyses of regional brain activity and motor network connectivity allow prediction of the behavioural effects of brain stimulation. SUMMARY:  rTMS and tDCS can be used to modulate stroke-induced changes of motor network activity and connectivity thereby improving hand motor function. The interindividual variability in response to brain stimulation calls for the identification of treatment-associated surrogate markers, which may be provided by neuroimaging.


Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review.

Numerous studies have recently been published on improving upper-limb motor function after stroke. There has been a particular interest in brain stimulation techniques, which could promote brain plasticity. In this review, tDCS and rTMS are presented as techniques that could be relevant in Physical Medicine and Rehabilitation (PM&R) centers in the future. We are presenting a comprehensive literature review on the studies using tDCS or rTMS for upper-limb rehabilitation after a stroke. Both techniques have shown their ability to modify cortical excitability and to transitorily improve upper-limb function after one single stimulation session. The first placebo-controlled, blinded therapeutic trials, which included repeated daily sessions, seem quite promising, and deserve to be validated by further trials.


Can tDCS enhance treatment of aphasia after stroke?

Recent advances in the application of tDCS in healthy populations have led to the exploration of the technique as an adjuvant method to traditional speech therapies in patients with post-stroke aphasia. This review aims to highlight our current understanding of the methodological and theoretical issues surrounding the use of tDCS as an adjuvant tool in the treatment of language difficulties after stroke. CONCLUSIONS: Preliminary evidence shows that tDCS may be a useful tool to complement treatment of aphasia, particularly for speech production in chronic stroke patients. The potential of tDCS is to optimise language rehabilitation techniques and promote long-term recovery of language. A stimulating future for aphasia rehabilitation

Con riferimento alla normativa europea ti informiamo che il sito GEA soluzioni utilizza cookies tecnici e di terze parti. Cliccando sul pulsante ACCETTA presti il consenso all’uso di tutti i cookies. Clicca qui per visionare l'informativa estesa