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Noninvasive Brain Stimulation in Stroke Rehabilitation
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Summary: Stroke is a common disorder that produces a
major burden to society, largely through long-lasting motor
disability in survivors. Recent studies have broadened our
understanding of the processes underlying recovery of motor
function after stroke. Bilateral motor regions of the brain
experience substantial reorganization after stroke, including
changes in the strength of interhemispheric inhibitory inter-
actions. Our understanding of the extent to which different
forms of reorganization contribute to behavioral gains in the
rehabilitative process, although still limited, has led to the
formulation of novel interventional strategies to regain mo-
tor function. Transcranial magnetic (TMS) and DC (tDCS)

electrical stimulation are noninvasive brain stimulation tech-
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niques that modulate cortical excitability in both healthy
individuals and stroke patients. These techniques can en-
hance the effect of training on performance of various motor
tasks, including those that mimic activities of daily living.
This review looks at the effects of TMS and tDCS on motor
cortical function and motor performance in healthy volun-
teers and in patients with stroke. Both techniques can either
enhance or suppress cortical excitability, and may move to
the clinical arena as strategies to enhance the beneficial
effects of customarily used neurorehabilitative treatments
after stroke. Key Words: Stroke, motor cortex, rehabilitation,
cortical stimulation, transcranial magnetic stimulation (TMS),

transcranial direct current stimulation (tDCS), plasticity.
INTRODUCTION

An estimated 700,000 Americans suffered a stroke
during 2005, incurring estimated costs related to their
care of approximately $56.8 billion.1 Stroke is a leading
cause of serious long-term disability, and approximately
1.1 million Americans with stroke had functional limi-
tations in activities of daily living in 1999.2 The burden
of stroke-related disability is predicted to increase in the
coming decades in proportion to the expansion of the
elderly population.3 Stroke case-fatality has declined, but
stroke incidence has not, leading to rising numbers of
stroke survivors.

After ischemic damage to motor areas of the brain, pa-
tients experience some degree of spontaneous recovery,4,5

increasingly so since the advent of interventions imple-
mented in the acute period after stroke—notably, use of
tissue plasminogen activator (TPA) to dissolve blood
clots. TPA represents an important advance in the fight
against this disease, but so far has benefited a limited
proportion of stroke patients.6 More than 50% of stroke
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survivors who reach the chronic stage experience perma-
nent motor deficits.7 Repetitive task-oriented motor
training represents the current standard in neurorehabili-
tation after chronic stroke.8,9 In recent years, new strat-
egies in repetitive motor training have raised substantial
interest, including constraint-induced therapy,10–12 bilat-
eral arm training,13,14 body-weight support treadmill
training,15–17 robotic assisted therapy,18–24 and use of
virtual reality protocols.25–30

MECHANISMS OF FUNCTIONAL RECOVERY

Studies of cortical plasticity after stroke suggest that
the damaged cortex has the potential for extensive reor-
ganization (for a review, see Ward and Cohen31 and
Calautti and Baron32). Among possible mechanisms of
neural plasticity contributing to functional recovery are
dendritic sprouting over time,33,34 new synapse forma-
tion,35 and long-term potentiation (LTP) and depression
(LTD).36,37 Reorganization after stroke may also involve
undamaged areas of cortex taking on functions of the
infarcted regions.38 Different forms of reorganization
that may contribute to functional recovery include dias-

chisis, peri-infarct reorganization, activity in the ipsile-
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sional or in the contralesional hemisphere, interhemi-
spheric interactions, and vicarious reorganization.

Diaschisis
In diaschisis, there is functional deactivation of un-

damaged areas of the CNS that are remote but con-
nected to the lesioned area.39 Imaging studies in stroke
patients have shown diaschisis in cerebellar structures
in the motor domain40 – 44 and also in other regions
related to language45 and vision46 processing. Resolu-
tion of cerebellar diaschisis has been proposed as one
of the mechanisms contributing to recovery of motor
function after stroke;47,48 for example, after intake of
amphetamines.49,50

Peri-infarct reorganization
Peri-infarct reorganization can occur after focal corti-

cal lesions in the primary motor cortex.51,52 This form of
plasticity, described in nonhuman primates, may contrib-
ute to motor recovery by allowing other areas near the
lesioned area to gain control of the weak body part.51,52

In humans, Jaillard et al.53 for 2 years followed a group
of four stroke patients who had a small lesion located in
the primary motor cortex (M1) and found that recovery
of finger movements was associated with a dorsal shift of
the cortical activation areas within M1. Note, however,
that such focal cortical lesions restricted to M1 are not
commonly seen in stroke patients. Additionally, in hu-
man studies the increased magnitude of peri-infarct ac-
tivation seen under functional MRI (fMRI)54 does not
show a direct correlation with the magnitude of motor
recovery,55 raising the question of the degree to which
peri-infarct reorganization contributes directly to motor
recovery. Such findings underscore both the importance
of designing realistic animal models of human stroke,
and its complexity.

Activity in the ipsilesional hemisphere
In addition to the peri-infarct rim, increasing levels of

activation have been reported in a distributed ipsilesional
network that includes primary motor cortex, premotor
cortex, supplementary motor area, and bilateral Brod-
mann area 40 in stroke. These findings correlated posi-
tively with one index of motor recovery, the hand score
of the motricity index.56 Taken together, these neuroim-
aging studies suggest that activation in ipsilesional motor
areas plays an important role in the recovery process.
Neurophysiological studies showed that transient disrup-
tion of activity in the ipsilesional M1 and dorsal premo-
tor cortex of patients with chronic stroke and good motor
recovery caused clear transient deficits in motor perfor-
mance of the paretic hand.57,58 Altogether, these findings
suggest that motor performance in the paretic hand of
patients with good motor recovery relies predominantly

on reorganized activity within the lesioned hemisphere.31
Activity in the contralesional hemisphere
The unaffected hemisphere is another important locus

of reorganization after stroke. Increased levels of con-
tralesional sensorimotor activation have been identified
during simple movements of the paretic hand.59,60 The
magnitude of contralesional activation appears to de-
crease in M1 at 3 to 6 months, relative to 1 week after the
stroke,60,32 but the intensity of contralesional M1 activity
does not correlate with the degree of recovery.56 This
finding might indicate that contralesional activation is
not functionally relevant for recovery,56 or that it is
insufficient to compensate for a marked motor deficit.

Increased contralesional activation may be most prom-
inent in the early stages after stroke, and with later re-
focusing of activation back to the ipsilesional motor re-
gions.61 Consistent with this view, disruption of activity
in contralesional M1 did not greatly disrupt paretic hand
function in patients with chronic subcortical stroke and
good motor recovery.57 On the other hand, disruption of
activity in the contralesional dorsal premotor cortex re-
sulted in disruption of a reaction-time task in patients
with poorer recovery.62 Moreover, higher levels of con-
tralesional activity in secondary motor areas (prefrontal
and parietal cortices) appear to be predictive of a slower
motor recovery, suggesting a possible role for activity in
the intact hemisphere in patients with lesser or unsuc-
cessful recovery.56 A recent study, however, applied
fMRI-guided TMS overactivated areas of the contrale-
sional hemisphere and found that a complex behavioral
task could be disrupted in chronic subcortical stroke
patients but not in a healthy age-matched group.63

Regardless of the specific role of each hemisphere, it is
clear that recovery processes are likely to rely on the
operation of more extensive ensembles of neurons orga-
nized in neural networks that link activity in different
cortical sites of both hemispheres. Additionally, the role
that activity in the intact and affected hemispheres plays
in motor control is likely to vary, depending on lesion
sites, time from stroke, complexity of the behavioral
task, and magnitude of impairment.31,63,64 If this is the
case, caution is advised in drawing definite conclusions
about the involvement of different ipsi- and contrale-
sional regions in the process of functional recovery.

Interhemispheric interactions
Interactions between the hemispheres can also contrib-

ute to reorganization. One example is interhemispheric
inhibition between homonymous motor cortical repre-
sentations.65 Transcallosal fibers are known to transmit
inhibitory influences between the homologous areas of
both hemispheres.66 These fibers are thought to be glu-
tamatergic and to project onto inhibitory GABAergic
interneurons.67 Patients with stroke have changes in mo-

tor cortical excitability68–70 and an abnormally high in-
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terhemispheric inhibition from the contralesional M1 to
the ipsilesional M1 with movements of the paretic hand.

These changes are observed in association with move-
ments of the paretic hand, but less so or not at all at rest.
The increased interhemispheric inhibition is more prom-
inent in cases with more substantial motor impairment,65

a finding consistent with previous work on interhemi-
spheric competition in sensory areas. These findings led
to the proposal of a similar model in the motor domain
(see Ward and Cohen31). Under this model, purposeful
modulation of excitability in motor regions of the intact
and affected hemisphere using noninvasive brain stimu-
lation could potentially contribute to functional restora-
tion.71

Vicarious reorganization
In vicarious reorganization, a healthy region of the

brain could take over the function of another, lesioned
brain area. The term has been used to explain the
finding of functional recovery after certain brain
lesions.72 Evidence for this type of process exists in
animal models51,73,74 and in humans.53

NONINVASIVE BRAIN STIMULATION

Recent work has raised the possibility that brain stim-
ulation can enhance the beneficial effects of motor train-
ing in the rehabilitative process.31 Studies in animal
models showed that motor recovery after focal lesions in
the primary motor cortex can improve with direct epi-
dural cortical stimulation.75,76 Human studies addressing
this possibility are currently underway.75 In parallel with
these invasive approaches, there has been increasing in-
terest in testing the effects of noninvasive cortical stim-
ulation in the rehabilitative process. Transcranial mag-
netic stimulation (TMS) and transcranial direct current
stimulation (tDCS) have been investigated as potential
tools for modulating motor recovery in stroke or influ-
encing motor, sensory, and cognitive functions.

TMS is delivered by passing a strong brief electrical
current through an insulated coil placed on the skull. The
current induces a transient magnetic field in the brain,
and electric currents in the cortex flow parallel to the
coil, thereby depolarizing neurons. TMS can enhance or
decrease activity in cortical regions and influence func-
tion, depending on multiple variables such as the fre-
quency, duration of stimulation, the shape of the coil, and
the strength of the magnetic field. The effects of repeti-
tive TMS (rTMS) on cortical excitability can outlast the
stimulation period for as much as 1 to 2 hours.77,78

tDCS at intensities of 1 to 2 mA is applied through two
surface electrodes placed on the skull. Depending on the
duration and the polarity of the stimulation, tDCS can
increase or depress excitability in the stimulated region

from minutes to 1 to 2 hours. tDCS does not appear to
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induce direct neuronal depolarization, as does TMS; in-
stead, it modulates the activation of sodium- and calci-
um-dependent channels and NMDA receptor activity,
promoting LTP- and LTD-like changes.79–81

The duration of effects elicited by a single application
of either TMS or tDCS appears to be comparable (up to
hours). Both techniques are noninvasive and appear to be
safe when used within established safety guidelines. The
mechanisms underlying their effects, however, may dif-
fer. TMS equipment is more expensive, but can stimulate
more focally and exhibits a better time resolution (TMS
can be applied with millisecond accuracy, but tDCS re-
quires several minutes). There is more experience in the
use of TMS protocols than of tDCS, but for double-blind
experimental designs sham tDCS is easier to achieve
than sham TMS.82 In rehabilitative settings, tDCS is
more easily applied simultaneously with cognitive or
motor training protocols. Thus, the choice of technique
depends largely on the particular hypothesis to be tested
and the experimental setting.

In terms of safety, the main issue raised with rTMS
has been the possibility of seizures; however, available
rules of application and training protocols have made
them a rare event.83 Individuals with history of seizures
are largely excluded from rTMS studies (except in trials
geared to test the possibility of beneficial effects in some
forms of epilepsy). For tDCS, on the other hand, there
are no reports of seizures, but safety studies are still
required. tDCS often elicits short-lasting tingling sensa-
tions at the beginning and end of the stimulation period,
rarely accompanied by redness under the electrode
sites.81,82,84 Occasional transient headaches have been
described for both TMS and tDCS. Both rTMS and tDCS
appear to be safe if used within proposed safety limits.

Additional points to keep in mind are that: (1) appli-
cation of TMS or tDCS to one cortical site will probably
influence distant cortical or subcortical sites through
trans-synaptic effects85,86; (2) in patients with brain le-
sions, expected models of current flow elicited by rTMS
or tDCS may differ from those in healthy volunteers87;
and (3) both techniques may potentially influence atten-
tion, fatigue, discomfort, or mood, which underscores the
importance of controlling for these factors in the design
of double-blind clinical trials.

Recent work has documented beneficial effects of
noninvasive brain stimulation on cognitive functions in
healthy humans and nonhuman primates. High-fre-
quency rTMS applied to the primary motor cortex re-
sulted in performance improvements in reaction-time
tasks88 and in motor sequence learning.89 Consistent
with these data, application to primary somatosensory
cortex produced lasting improvements in two-point tac-
tile discrimination and an enlargement of the right index
finger representation in S1, as measured by fMRI.90
Similar findings have been reported with tDCS. Early
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studies in nonhuman primates demonstrated that anodal
tDCS to dorsolateral prefrontal (DLPF) cortex could im-
prove learning of a simple motor reaction time task.91 In
humans,92,93 application of anodal tDCS has been re-
ported to improve implicit learning when applied to the
primary motor cortex94 and to enhance working memory
and probabilistic classification learning when applied to
the DLPF cortex.95,96 Visuomotor learning was facili-
tated with anodal tDCS applied to the primary motor
cortex or to area V5 of occipital cortex.97

The mechanisms underlying these effects are incom-
pletely understood, but they could include modulation of
LTP- or LTD-like processes,98 as well as nonspecific
changes such as generalized postsynaptic excitability en-
hancements.99 These well documented effects of nonin-
vasive brain stimulation in healthy subjects support pos-
sible application in stroke patients.

Models of interhemispheric competition71 suggest
possible strategies to increase the beneficial effects of
motor training on function in the paretic hand (FIG. 1):
enhancing excitability in the ipsilesional M1 and de-

FIG. 1. Possible therapeutic uses of noninvasive brain stimulati
magnetic stimulation [TMS] and transcranial direct current stimu
ance of interhemispheric inhibition, which may be reduced by
contralesional hemisphere. Alternatively, beneficial forms of re
ipsilesional hemisphere.
creasing excitability in the contralesional M1. Neuro-
modulation of activity in the dorsal58,62 and ventral100

premotor cortices or the supplementary motor area are
under active investigation.31

Enhancing excitability in the ipsilesional motor
cortex

Both tDCS and rTMS have been used to enhance
excitability in the ipsilesional primary motor cortex.
Anodal tDCS applied to the ipsilesional M1 has been
studied in patients with chronic stroke in sham-
controlled double-blind crossover experimental
designs.95,101,102 In the first double-blind sham con-
trolled study in 6 patients, each with a single ischemic
subcortical cerebral infarct,101 the authors documented
transient improvements in performance of the Jebsen–
Taylor hand-function test (JTT)103 with one single
session of stimulation but not with sham. This im-
provement was evident in all patients studied, repre-
senting approximately a 10% reduction in the time
required to perform the JTT, and persisted for more
than 30 minutes after the end of the stimulation period.

romote recovery in chronic stroke (in this diagram, transcranial
[tDCS]). Cortical reorganization after stroke produces an imbal-
ry TMS or transcranial direct current stimulation (tDCS) to the
ization may be promoted by excitatory TMS or tDCS to the
on to p
lation

inhibito
The beneficial behavioral effect in this study was as-
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sociated with increased motor cortical excitability and
reduced intracortical inhibition in ipsilesional M1. Al-
though no improvement was observed after sham stim-
ulation, there was a trend toward a greater improve-
ment in subtests of the JTT that emphasize fine motor
control of the distal hand muscles, such as turning
over cards and picking up objects with a spoon, com-
pared with activities related with upper arm motor
function. Improvements in the JTT are highly relevant
to a stroke patient’s ability to perform everyday ac-
tivities and have been shown to correlate well with
functional rehabilitation.104 –106

In a study using a single session of rTMS in patients
with chronic stroke, Kim et al.89 showed that high-fre-
quency rTMS (10 Hz) to the ipsilesional M1 resulted in
a significantly larger increase in MEP amplitudes than
sham rTMS; this increase was associated with an en-
hanced accuracy during performance of a finger motor
sequence task. In a study performed in subacute instead
of chronic stroke patients, with multiple sessions of
rTMS applied to the ipsilesional M1, Khedr et al.107 used
rTMS (10 trains of 3 Hz stimulation, duration 10 sec-
onds, with 50 seconds between each train, twice daily)
combined with customary rehabilitative treatment for 10
days within the first 2 weeks after stroke. They reported
performance improvements with rTMS relative to sham
lasting for at least 10 days after the end of the treatment
period.107 None of the studies that stimulated the ipsile-
sional primary motor cortex reported complications other
than transient headache.

Such studies have led to the proposal that repetitive
stimulating sessions could elicit longer lasting effects
than single applications, as well as the idea that associ-
ation of cortical stimulation with motor training could
enhance the benefit.

Decreasing excitability in the contralesional motor
cortex

Based on the idea that interhemispheric interactions
can influence motor performance,108 it should be possi-
ble, in theory, to improve motor function in the paretic
hand by decreasing excitability in the contralesional
M1—possibly through modulation of inappropriate in-
terhemispheric inhibition.65 Studies in normal volunteers
showed that decreasing excitability in one M1 results in
increased excitability in the opposite M1109,110 and even
in performance improvements in motor function of the
ipsilateral hand.111 In patients with stroke, it was shown
that cathodal tDCS applied to the contralesional M1 may
improve performance in the paretic hand, possibly by
suppressing the imbalance in interhemispheric inhibition
proposed to interfere with stroke recovery in some pa-
tients.95 Decreasing activity in the contralesional M1
with 1 Hz rTMS was recently found to decrease inter-

hemispheric inhibition from the contralesional to ipsile-
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sional hemisphere of chronic stroke patients112; the de-
crease in interhemispheric inhibition elicited by rTMS
correlated with functional improvements in a finger
pinch acceleration task. Another study, using low-fre-
quency rTMS to the contralesional motor cortex, found
behavioral improvements in the paretic hand in simple
reaction time and on the Purdue Pegboard test.113 In a
study of 6 chronic stroke patients by Fregni et al.,95 the
effects of cathodal tDCS applied to the contralesional
primary motor cortex was compared with the effects of
anodal stimulation to the affected hemisphere and sham
stimulation, again using the JTT time as the behavioral
outcome measure. Their results for anodal tDCS to the
affected hemisphere95 were consistent with those of
Hummel et al.101 (Note, however, that the patient popu-
lation studied by Fregni et al.95 was subacute stroke
patients more severely affected than those studied by
Hummel et al.,101 limiting to some extent the compara-
bility of the 2 studies.) In that study by Fregni et al.,95

cathodal stimulation to the contralesional M1 produced a
significant improvement of 11.7% on motor performance
relative to sham.

The therapeutic studies conducted in stroke patients
thus far have been limited to interventions consisting of
a single session of approximately 20 minutes of stimu-
lation. It is likely that longer sessions or multiple appli-
cations could lead to longer lasting beneficial effects, as
shown by Khedr et al.107 using rTMS. Another potential
advantage of this approach over stimulation of the ipsile-
sional M1 is that it is applied to healthy neural structures.

Although the majority of interventional studies of
TMS in stroke patients have focused on motor func-
tion, some studies have sought to test the ability of
decreasing activity in the contralesional hemisphere to
improve language function, including nonfluent and
global aphasia.114,115 Overall, their findings further
support the concept that repeated interventions (in this
case, to decrease activity in the contralesional hemi-
sphere) can lead to behavioral gains in speech function
that remain stable over lengthy periods, possibly
through modulation of inhibitory interhemispheric in-
teractions. Interestingly, prior to the TMS intervention
in one patient,115 speech therapy had been discontin-
ued due to lack of progress and poor prognostic indi-
cators.

PERSPECTIVES

Studies of noninvasive brain stimulation have shown
promising results thus far, but there are some limitations
to be kept in mind. The studies were obtained in rela-
tively small and selected groups of subjects, often with
moderate remaining motor function. The magnitude of
improvements reported so far ranged between 10% and

30%, and we do not know how long lasting they will



NONINVASIVE BRAIN STIMULATION IN STROKE REHABILITATION 479
prove to be. This issue could be addressed in future
studies using multiple applications of tDCS or TMS.

It would be useful to determine the best parameters
and type of experimental sham controls required to op-
timize and detect the effects. Similarly, we need to better
understand the influence of lesion site, chronicity, and
levels of impairment on the magnitude of the response to
noninvasive stimulation, as well as on the duration of
effects. More important, the behavioral endpoint mea-
sures in these studies have differed: some ecologically
valid, others less so. In addition to this problem, it is
conceivable that performance of different tasks engages
activity in different neural networks after stroke, making
comparisons across studies even more difficult.

In conclusion, TMS and tDCS are emerging as pow-
erful tools for modulating brain activity and cognitive
function in stroke patients, with the goal of contributing
to rehabilitation. Larger scale double-blind sham-con-
trolled clinical trials are needed to determine the validity
of these novel interventions.
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